
International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 12 – Dec 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 15

Performance in Layered Software

Architectures: The case of customized

organizational software
Yonah Etene

1
, Josphat M. Karani

2

1Department of Computer Science, Kibabii University,
2Department of Information Technology, Kirinyaga University

Abstract: Software architecture is the defining and

structuring of a software solution that is capable of

meeting technical and operational requirements. It is
essential in the organization of a system into its

components and helps guide the design of the overall

system to ensure functionality of the components to

achieve its effective performance.When components

are layered, it makes it difficult for an organization

to choose and customize the standard package

software. This paper examined performance in

layered software architecture and how to best

achieve effective customization without affecting on

the operations of an organization.

Keywords: Software architecture, Performance,

Customization

I. INTRODUCTION

Software architecture is the fundamental

organization of a software system represented in its
components, their relationships to each other, to the

environment, and the principles controllingits design

and evolution [6]. In addition to the software

architecture components and their relationships, this

definition also covers architecture rules and

principles like architectural styles or the use of

particular conventions during the software

development, maintenance, and evolution life cycles.

Ref [21] notes that software architecture is the carrier

of system qualities such as performance,

modifiability, and security, of which none can be
achieved without a unifying architectural vision.On

the other hand layered software architecture, like all

architectural structures, reflects a division of the

software into units. These units are layered and each

layer represents a virtual machine that enable

provision of cohesive set of services that other

software can use without knowing how those services

are implemented[21].

Many today organizations are building

application-specific data structures within general-

purpose database management systems for either

tracking customers or to manage better workflows.

Even consumer-focused software, such as email or

instant messaging, is increasingly being customized

by individual users for visual appearance, greetings,
and actions as in [13]. It is apparent that software is

among the most pervasive forms of mass

customization that is reaching into our lives and that

such customization is different by degree than the

more standardized forms of variety that is found in
automobiles, consumer electronics, or interior

furnishings as in [18].The purpose of this study is to

investigate the shortcomings of customized software

products, the level of performance in standardized

forms and suggest ways of improving performance in

customizable layered software products in

organizations.

II. METHODOLOGY

The study employed desktop research. It

surveyed and analyzed existing literature on software

layered architectures used for organizational systems

and how customization affects their performance.

Software customization can create high level of

complexity and cost, unless an organization takes

time to create and periodically renew a well-defined,

layered architecture for its software products [12].
Itcan offer at times the ability to obtain competitive

advantagevis-à-vis companies using only standard

features as in [9]. However, this also comes with a

cost and associated risks. Hence the assessment of

software with a view to customize is complex and

should be only undertaken with a trade of in mind.

There are three categories of customization:

configuration, process and technical customization.

Each level of customization has an effect on the

layered software architecture which then impacts on

the overall performance of the system in service

delivery of the organization. A point in case is the

bolt-on configuration, a type of configuration

customization that affects all the software layers.

III. FINDINGS AND DISCUSSION

The findings of this study are presented and

discussed in this section. The findings are a result of

document analysis.

The short comings of customizable software

products in organizations

Today, most organizations perform a great
deal of their work online that requires use of

Information Systems. Though the availability of the

ready-to-use software applications have greatly

reduced the acquisition times of these systems,

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 12 – Dec 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 16

organizations still spend a great amount of time and

resources in their implementation and management.

These applications are only offered as a part of

generic software packages, and after their purchase,

organizations still have to customize them according

to their unique requirements as they are designed in
such a way as to allow the organization to configure

its software with hundreds of options as in [15]. This

phase also requires substantial amount of learning, as

the local IT team has to depend on the external

consultants and that requires consulting fees. It may

also take years for the customization phase to

complete and the total costs can add up to millions of

dollars. The pricing of these applications (licensing

fee) is very complex as it depends on numerous

factors such as the components purchased,

consultation fees and the size of the organization

among other factors as in [16].

Software reuse or commercial off the shelf

software (COTS) can lower cost, but only partially.

COTS application software most often satisfies less
than 40 percent of the functionality of an application.

Even when functional requirements are reasonably

satisfied well, critical nonfunctional requirements

such as security, reliability, and performance have to

be addressed and this results in schedule and cost

impacts. If the functional or interface requirements

are not satisfied, wrappers (additional code required

to make the new development able to use the existing

software) must be planned, designed, developed, and

tested. In all instances, the system or software

architecture must be sufficiently mature to allow the

detailed design of critical interfaces and the conduct
of reasonable trade-offs to enable the evaluation,

selection, acquisition, and integration of the

capability into the system or software architecture.

Only when components are produced like hardware

chips, that is, components that are designed for reuse,

that includes appropriate inputs and outputs, and have

been fully tested for the environment can the risk of

reusing someone else‟s code be reduced [1].

Reuse involves three activities, each of

which has a price: redesign, reimplementation, and

retesting. Redesign arises because the existing

functionality may not be exactly suited to the new

task; it likely will require some rework to support

new functions, and will likely require reverse

engineering to reveal its current operation. Some
design changes may be in order. This will result also

in reimplementation, which generally takes the form

of coding changes. Whether or not redesign and

reimplementation are needed, there should be a plan

to conduct some retesting to be sure the preexisting

software operates properly in its new environment.

The findings are summarized in Table 1.

Table 1:Comparison of Types of Reusable Software
 COTS COTS Planned

Reuse

Incidental

Reuse

Ready to

use and

documente

d

Yes Sometimes Often Sometimes

Allows

programs

to

offsetrisin

g

developme

nt costs

Often Often Often often

Tends to

follow

open

standards,

making

migration

easier

Often Sometimes Sometim

es

Occasional

ly

Designed

for reuse,

generalize

d and well

tested

Usually Often Sometim

es

Occasional

ly

Often

updated

and

improved

Usually

due to

competiti

ve

pressure

Occasional

ly

Sometim

es

Seldom

Table 1 reveals that though commercial of

the shelf software (COTS) may sound a better deal in

most organizations because of reduction in the

overall cost of the software and development time, it

still has other limitations as summarized in Table 2.

Table 2:Limitations of Cots
Advantages Disadvantages of COTS

Quicker time to market Use involves learning curve,

need for integration and further

customization

Better reliability May not meet all user

requirements because it is

intended for general use

More end user functionality

when compared to custom-

developed components

Can be difficult to support

because source code may not be

provided

Support for components across

different hardware and

environments

Vendors may discontinue

support or cease business

Stricter requirements because

of its release for general use

Table 2 reveals that reliability of the

software can be greatly compromised when an

organization opts to use customized of the shelf

software. Support of the software may proof also to

be difficult because of the unavailable source code

and also incase vendors cease their support or

product on the market.

The level of performance in standardized forms of

software

Performance is a pervasive quality of
software systems; everything affects it, from the

software itself to all underlying layers, such as

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 12 – Dec 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 17

operating system, middleware, hardware,

communication networks, etc. Software performance

is a serious problem in significant fraction ofsoftware

projects. This may cause delays, cost overruns,

failures on deployment, and even abandonment of

projects, but such failures are seldom documented.

By adopting standard packages,

organizations substantially reduce the costs, risks and

delays associated with custom software development,

and benefit from the on-going support services
provided for packages by vendors. These packaged

solutions come with built-in assumptions and

procedures about organizations‟ business processes.

The basic purpose of standardization is to achieve the

most efficient use of resources. Performance

measures are recognized as an important element of

all Total Quality Management programs. According

to the IEEE Standard Glossary of Software

Engineering Terminology [5], the quality of software

products is defined as: the degree to which a system,

component or process meets specified requirements
and the degree to which a system, component or

process meets the needs or expectations of a user of

which performance of the software is one of the user

needs.With regard to planning and engineering,

performance can be equated with minimizing time

and costs.

A standardized system interface, strictly

object-oriented working, and centralized data

management mean data consistency across all

planning steps including automatically updated

system documentation. However, process control also

becomes more complex as the multi-layer nature of

automation engineering increases and it merges more

and more with information technology [17]. For

example, enterprise resource planning (ERP) systems

are packaged software applications, and the majority
(~60%) of project cost is devoted to setup,

installation and customization of the software,

services that are typically provided by outside

consultants such as Andersen Consulting or EDS as

in [4],[14]. Their Success or failure hinges on the

effective collaboration among these teams, the

business knowledge of internal business experts and

the technical skills of outside IT consultants [14].

Ways of improving performance in customizable

layered software products
Changing packaged software to meet user

needs is the essence of customization. Packaged

solutions normally involve software or services that

are tailored to achieve a specific scope of work and

are intended to meet a broad-spectrum needs of a

class of organizations, rather than the unique needs of

a particular organization, as is the case in custom

software development.

Layered architectures are commonly used

and recognized in software development. Layering

improves maintainability and testability of software-

intense systems. The layered architecture for software

systems should be anchored in system architecture, in

order to have a common layered architecture of all

the (software) components in the system, thus

enabling to easily connect them and to be able to
foresee Test Access Mechanisms [11] for system on

system architecture level and optimize them

according to the layers of software architecture.

Software as a Service (SaaS) has become a
focus of many enterprises as it provides software

application as Web based delivery to serve many

customers. The sharing of infrastructure and

applications provided by SaaS has a great benefit to

customers, since it reduces costs, minimizes risks,

improves their competitive positioning, as well as

seeks out innovative[3].

Although SaaS application are generally

developed with standardized software functionalities

to serve many customers as possible, many customers

often ask to change the standardized format provided

functions according to their specific business needs,

and this can be achieved through the configuration

and customization provided by the SaaS vendor. Ref

[19], asserts that this new form of software

distribution is called Software as a Service (SaaS).

Even though, vendors adapt the best

practices modelled in the ERP system, in order that

the provided functions can be used by a huge number
of customers, still many customers ask to tailor some

functions to their business needs thus narrowing the

gap between company-specific business processes

and system-embedded best practices.

Vendors provide their customers tools to do

their own customizing and configuration, by using

Multi-tenancy Architectures (MTA) [8]. This is an

architectural pattern in which a single instance of the

software is run on the service provider‟s

infrastructure, and multiple tenants access the same

instance. On the other hand, in single-tenant

environment every tenant has his own customized

application instance.There are: Infrastructure as a

Service (IaaS), Platform as a Service (PaaS), and

Software as a Service (SaaS), as in Figure 1.

Figure 1: Layered architecture

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 12 – Dec 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 18

In multi-Tenancy SaaS environment,

without a good architecture and strategy the

application performance is a big issue for service

providers. To enable a good performance to clients

SAP is uses the techniques such, Tenant

configuration isolation. The system first checks in the
central multi-tenant configuration file where the

configuration tenant file is located, and then reads the

file. In this case the system only deals with a small

configuration files. The other technique is Tenant

database isolation in which having different database

for each tenant speeds up the read of the

configuration which are saved in the database side.

The multi-layer architecture such asSAP

web application is based on a multi-layer architecture

and the configuration of the application is often

organized in a way that changes in one layer thus will

speed up the load of the application changes [3]. The

building blocks for customizations consist of modular

features with characteristics of a software system or

systems in a domain as in [10]. These features define
both common facets of the domain as well as

deference‟s between related systems in the domain.

They make each system in a domain deferent from

others. Ref [12], asserts that customization when used

can create high levels of complexity and cost, unlessa

firm takes the time to create and periodically renew a

well-defined, layered architecture for its software

products. Therefore in modeling an ICT-intensive

organization, software Infrastructure are often

considered as in Figure 2.

Figure2:Software Infrastructure in an ICT-intensive

Enterprise

The Figure 2, shows the digital
infrastructure as the basic digital platform with PCs,

standalone or linked in networking and operating

systems and technological layer as an architecture

which is open, flexible and service-oriented. All

software tools have a modular structure that recalls

useful services for a particular business goal. The

application layer is the set of software applications

that supports different functions and business

processes. The networking layer includes the

software that interacts with external environment:

customers, suppliers, partners and all market players.

Therefore an ICT-intensive enterprise must

have a robust, integrated, interoperable and

intelligent infrastructure where software modules can

exchange data to automate, in an efficient and

effective manner as in [4].Ref [7], notes that heap

layers are more flexible and efficient infrastructure

that can be used for building custom and general-

purpose allocators. This infrastructure is based on a
combination of C++ templates and inheritance called

mixins. Mixins are classes whose superclass may be

changed. Using them allows the programmer to code

allocators as compassable layers that a compiler can

implement with efficient code. This technique allows

programmers to write highly modular and reusable

code with no abstraction penalty.

IV. CONCLUSIONS

Performance properties include involve

quantities such as: time durations, occurrence

frequencies, probabilities, repetitions and data sizes.

Performance analysis normally yields information

like average response time of components or systems,

mean throughput capacity, resource utilization or

probabilities of missing delay targets. Therefore,
software architecture plays an important role in

determining quality attributes, such as modifiability,

reusability, reliability, and performance, of a layered

software system with focus on customized software

systems. While a good architecture cannot guarantee

attainment of quality goals, a poor architecture can

also prevent their achievement. While decisions made

at every phase of the development process can impact

on quality of software, architectural decisions have

the greatest impact on quality attributes such as

modifiability, reusability, reliability, and

performance.Most performance failures are due to a
lack of consideration of performance issues early in

the development process and in the architectural

design phase. Further, poor performance is more

often the result of problems in the architecture rather

than in the implementation. Performance in layered

software is therefore a function of the frequency and

nature of inter-component communication, in

addition to the performance characteristics of the

components themselves, and hence can be predicted

by studying the architecture of a system

REFERENCES
[1] K. Bradford, &L. Vaughan, Improve Commercial-off-the-

Shelf (COTS) IntegrationEstimates.2004

[2] C.Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and

A. Hart, EnablingMultitenancy: An industrial experience

report. 2010

[3] Z. Djamal, Configuration in ERP SaaSMulti-Tenancy. 2009

[4] R. Dolmetsch, T. Huber, E. Fleisch, and H. österle,

Accelerated SAP.1998

[5] IEEE Standard Glossary of Software Engineering

Terminology. IEEE Std 610.12-1990

[6] IEEE 1471-2000 standard

[7] B. Gilad, and C. William, Mixin-based inheritance. 1990

[8] D. Jacobs, and S. Aulbach, Ruminations on multi-tenant

databases. 2007

[9] D. Jyotirmoy Dutta nd. Understanding PLM System

customization

[10] K.Kang, S.G.Cohen, J.A. Hess, W.E. Novak, A.S.Peterson,

Feature-Oriented DomainAnalysis (FODA) Feasibility

Study.1990

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 12 – Dec 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 19

[11] J.Lamm, A. Espinoza, and A.K. Berg, System tests for

reconfigurable signal processingSystems. 2009

[12] C. Mann, „Why software is so bad‟, Technology Review.2002

[13] H. Marc, “Modular, layered architecture: the necessary

foundation for effective massCustomization in software”.

2005

[14] H. Osterle, E. Feisch, and R. Alt, R. “Business Networking:

Shaping Enterprise Relationshipson the Internet

[15] N. Pollock &J. Cornford, “Customizing Industry Standard

Computer Systems for Universities. 2004

[16] K. Rajeev, “Efficient Customization of Software

Applications of an Organization”. 2013

[17] AG. Siemens. “The SIMATIC PCS7, Process Control

System. 2013

[18] T. Simpson, K. Umapathy, J. Nanda, S. Halbe, and B. Hodge,

„Development of a frameworkfor web-based product platform

customization‟, Journal of Computing and InformationScience in

Engineering. 2003

[19] M. Turner, D. Budgen,P. Brereton, “Turning software into a

service”.2003

[20] P. C. Clements, “Coming Attractions in Software

Architecture”. 1993

[21] P.Clement, F. Bechmann, L.Bass, D.Carlan, J. Ivers, R.

Little, P. Merson, R.Nord andJ.Stafford. Documenting

Architectures Layers (CMU/SEI-2000-SR-004)

http://www.ijcttjournal.org/

